Apical, Lateral, and Basal Polarization Cues Contribute to the Development of the Follicular Epithelium during Drosophila Oogenesis
نویسندگان
چکیده
Analysis of the mechanisms that control epithelial polarization has revealed that cues for polarization are mediated by transmembrane proteins that operate at the apical, lateral, or basal surface of epithelial cells. Whereas for any given epithelial cell type only one or two polarization systems have been identified to date, we report here that the follicular epithelium in Drosophila ovaries uses three different polarization mechanisms, each operating at one of the three main epithelial surface domains. The follicular epithelium arises through a mesenchymal-epithelial transition. Contact with the basement membrane provides an initial polarization cue that leads to the formation of a basal membrane domain. Moreover, we use mosaic analysis to show that Crumbs (Crb) is required for the formation and maintenance of the follicular epithelium. Crb localizes to the apical membrane of follicle cells that is in contact with germline cells. Contact to the germline is required for the accumulation of Crb in follicle cells. Discs Lost (Dlt), a cytoplasmic PDZ domain protein that was shown to interact with the cytoplasmic tail of Crb, overlaps precisely in its distribution with Crb, as shown by immunoelectron microscopy. Crb localization depends on Dlt, whereas Dlt uses Crb-dependent and -independent mechanisms for apical targeting. Finally, we show that the cadherin-catenin complex is not required for the formation of the follicular epithelium, but only for its maintenance. Loss of cadherin-based adherens junctions caused by armadillo (beta-catenin) mutations results in a disruption of the lateral spectrin and actin cytoskeleton. Also Crb and the apical spectrin cytoskeleton are lost from armadillo mutant follicle cells. Together with previous data showing that Crb is required for the formation of a zonula adherens, these findings indicate a mutual dependency of apical and lateral polarization mechanisms.
منابع مشابه
Integrins contribute to the establishment and maintenance of cell polarity in the follicular epithelium of the Drosophila ovary.
The generation of epithelial cell polarity is a key process during development. Although the induction and orientation of cell polarity by cell-cell and cell-extracellular matrix (ECM) interactions is well established, the molecular mechanisms by which signals from the ECM control cell polarity in developing epithelial tissues remain poorly understood. Here, we have used the follicular epitheli...
متن کاملThe Drosophila PAR-1 Spacer Domain Is Required for Lateral Membrane Association and for Polarization of Follicular Epithelial Cells
The Ser/Thr kinases of the PAR-1/MARK/Kin1 family are conserved regulators of polarity in epithelial and non-epithelial cells . Drosophila PAR-1 localizes laterally in the follicular epithelium of the ovary , where it has been shown to function at two distinct levels: It stabilizes the cytoskeleton and it regulates apical-basal polarity by directly inhibiting lateral assembly of the apical aPKC...
متن کاملThe neurogenic genes egghead and brainiac define a novel signaling pathway essential for epithelial morphogenesis during Drosophila oogenesis.
Notch (N) and other neurogenic genes have been implicated in two fundamental processes, lateral specification of cell fates, and epithelial development. Previous studies have suggested that the neurogenic gene brainiac (brn) is specifically required for epithelial development (Goode, S., Morgan, M., Liang, Y-P. and Mahowald, A. P. (1996). Dev. Biol. 178, 35-50). In this report we show that eggh...
متن کاملDlg5 maintains apical polarity by promoting membrane localization of Crumbs during Drosophila oogenesis
Apical-basal polarity plays critical roles in the functions of epithelial tissues. However, the mechanisms of epithelial polarity establishment and maintenance remain to be fully elucidated. Here we show that the membrane-associated guanylate kinase (MAGUK) family protein Dlg5 is required for the maintenance of apical polarity of follicle epithelium during Drosophila oogenesis. Dlg5 localizes a...
متن کاملJak-Stat pathway induces Drosophila follicle elongation by a gradient of apical contractility
Tissue elongation and its control by spatiotemporal signals is a major developmental question. Currently, it is thought that Drosophila ovarian follicular epithelium elongation requires the planar polarization of the basal domain cytoskeleton and of the extra-cellular matrix, associated with a dynamic process of rotation around the anteroposterior axis. Here we show, by careful kinetic analysis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 151 شماره
صفحات -
تاریخ انتشار 2000